
Examples of Mochi services

HEPnOS, FlameStore, and
Mobject

Mochi Bootcamp
September 24-26, 2019

Methodology for designing a data service

2

User
Requirements

Service
Requirements

Composition
and

Interfacing

Building
Blocks

Data model
Access
pattern
Guaranties

Data organization
Metadata
organization
User interface

Composition glue
code
API implementation

Runtime
Service
providers

Identifying application needs

Which data model?

● Arrays, meshes, objects…

● Namespace, metadata

Which access pattern?

● Characteristics (e.g. access sizes)

● Collective/individual accesses

Which guarantees?

● Consistency

● Performance

● Persistence

3

User
Requirements

Identifying application needs

Which data model?

● Arrays, meshes, objects…

● Namespace, metadata

Which access pattern?

● Characteristics (e.g. access sizes)

● Collective/individual accesses

Which guarantees?

● Consistency

● Performance

● Persistence

4

User
Requirements

Service
Requirements

• How should data be organized?

• Sharding

• Distribution

• Replication

• How should metadata be organized?
• Distribution

• Content

• Indexing

•

• How do clients interface with the service?
• Programming language

• API

HEPnOS: A Storage
Service for High Energy
Physics Applications

5

Storing “Products”

6

class Collision {

 double energy;

 std::array<double,3> position;

 ...

};

Data Model
● Many instances of small C++ objects
● Hierarchy of datasets, runs, subruns, and events
● Products accessible by “tag”

Access Pattern
● Write-once, read-many
● Products accessed atomically
● Access by “tag” and by type
● Iterators to navigate the hierarchy

User
Requirements

Envisioned usage

• Long-running (weeks), resizable cache based on fast,
in-compute-node storage (SSDs, NVRAM, local memory)

• Accessed by multiple applications concurrently

• Backed-up by a more permanent storage system (parallel file
system, archive system, object store) when undeployed

7

Figuring out service requirements

Interface

● C++ interface with integrated serialization

● Need for batching features and non-blocking transfers

Backend

● Distributed key/value store

● Objects small enough not to be sharded

● No replication needed

● No overwrite allowed

Organization

● Path-like namespace

● Hashing function mapping paths to target

8

Service
Requirements

Margo runtime
(Mercury + Argobots)

BAKE

SDS-KeyVal

Client

RPC

RDMA

PMEM

LevelDB

C++ API

Boost, YAML

9

Example of HEPnOS’s interface

10

// initialize a handle to the HEPnOS datastore

hepnos::DataStore datastore("config.yaml");

// access a nested dataset

hepnos::DataSet ds = datastore["path/to/dataset"];

hepnos::Run run = ds[43]; // access run 43 in the dataset

hepnos::SubRun subrun = run[56]; // access subrun 56

hepnos::Event ev = subrun[25]; // access event 25

// iterate over the subruns in a run

// using a C++ range-based for

for(auto& subrun : run) { ... }

● Map-like access to the hierarchy of datasets, runs, subruns, and events
● Iterators to navigate the hierarchy

Example of HEPnOS’s interface

11

struct Particle {

float x, y, z; // member variables

// serialization function for boost to use

template<typename A>

void serialize(A& a, unsigned long version) {

ar & x & y & z;

}

};

...

hepnos::Event ev = subrun[25]; // access event 25

// store data (an std::vector of Particle)

st::vector<Particle> vp1 = ...;

ev.store("mylabel", vp1);

// load data

std::vector<Particle> vp2;

sv.load("mylabel", vp2);

● Serialization based on Boost
● Load/Store functions

FlameStore: a Storage
Service for Deep
Learning Workflows

12

Storing neural networks

13

Data Model
● Large weight matrices
● Neural network architecture

Access Pattern
● Not many neural networks
● Writes, updates, and reads
● Neural networks accessed atomically
● Access by name within a flat namespace
● The application is not I/O bound

User
Requirements

Envisioned usage

• Workflow running for a few hours to a few days

• Storage system spanning the workflow allocation

• Backed-up by a more permanent storage system (parallel file
system, archive system, object store) when undeployed

14

Figuring out service requirements

Interface

● Python interface easy to use with Keras

● Need for efficient access to tensors memory

Backend

● Single key/value store for metadata

● Distributed blob storage w/ efficient bulk transfers

● No replication needed

● Overwrite allowed

Organization

● Flat namespace

● Hashing function mapping name to target

15

Service
Requirements

BAKE

SDS-KeyVal

Client

RPC

RDMA

PMEM

LevelDB

Python
API

16

Tensorflow
C++

interface

Master
provider
(custom)

Example of FlameStore’s interface

17

● Integrates with Keras code through the callback interface
● Enables checkpointing the optimizer in addition to weights
● Records the model’s architecture using JSON

with Engine('tcp', use_progress_thread=True, mode=pymargo.client) as engine:

 client = Client(engine)

 provider = client.lookup(provider_addr, provider_id)

 ...

 callback = RemoteCheckpointCallback(model_name='MyModel',

 client=client, provider_addr=provider_addr,

 provider_id=provider_id))

 model = ...

 model.fit(... callbacks=[callback])

 ...

 model = client.load_model(provider, 'MyModel')

 optimizer = client.load_optimizer(provider, 'MyModel')

Mobject: an Object
Storage Service tailored
for HPC

18

Storing objects for HPC

19

Data Model
● Mimic the RADOS data model
● Objects are byte arrays identified by unique names
● Objects can be written incrementally by many processes
● Associate key/val attributes with objects

Access Pattern
● Objects will be accessed/updated concurrently, by potentially

many processes
● Object accesses tend to be large & aligned, but small strided

accesses critical to performance
● Accessed directly by apps and by middleware systems
● Expect a mix of read and write

User
Requirements

Envisioned usage

• In-system object store deployed alongside application(s) as
primary I/O provider

○ Dedicated nodes or co-located with app nodes

• Typically backed by persistent memory devices, but can also offer
in-memory object storage

○ Similar to prior examples, mechanisms exist to migrate to
more appropriate levels in the storage hierarchy

20

Figuring out service requirements

Interface

● C interface implementing a subset of the RADOS API

● Simple POSIX-like API for accessing object extents

Backend

● Distributed blob storage w/ efficient bulk transfers

● Distributed metadata w/ a kv per blob store

● Log-structured object storage abstraction

● No replication

Organization

● Flat namespace

● Hashing function mapping name to target

21

Service
Requirements

22

Object API

Client
Memory

Object Provider

Application Process

Object Client

Object provider
node

Application
node

PMDK or
POSIX

Extent
Provider

Bake
Client

DB (e.g.,
LevelDB)

KV Client

KV Provider

Example of Mobject’s interface

23

● Simple, POSIX-like create/read/write interface for accessing object data
● Implements the RADOS write_op and read_op interfaces, allowing clients to submit lists

of I/O operations for a given object

{

rados_write_op_t create_op;

rados_op = rados_create_write_op();

rados_write_op_create(rados_op, LIBRADOS_CREATE_IDEMPOTENT, NULL);

rados_write_op_write(write_op, (const char *)buffer, length, offset);

... /* more operations */

ret = rados_write_op_operate(rados_op, rados_ioctx, object_name, NULL, 0);

rados_release_write_op(rados_op);

if (ret)

 fprintf(stderr, "unable to create RADOS object", ret);

}

Mobject performance results

• Using IOR (with RADOS backend)
as a driver, compare a couple of
different Mobject deployments
against GPFS on Cooley system @
Argonne

○ Kove devices are
network-attached
persistent memory devices

○ tmpfs deployment is directly
to RAM (not persistent)

24

